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 When developing software in any discipline, 
using the traditional waterfall process or any variant 
of agile and spiral development, all stakeholders are 
faced with the existence of multiple conceptual lay-
ers: requirements, design, and final running code. 
Throughout the development process, domain 
experts, system engineers, programmers, and other 
stakeholders constantly interact to make sure that 
the transitions across the boundaries of such con-
ceptual layers are indeed correct, and offer accept-
able mappings, usually unidirectional refinements. 
Development tools assist in the process, by introduc-
ing artifacts that can be understood and discussed 
by people of different professional backgrounds, 
and which can be tested and validated, manually or 
automatically, against artifacts from other layers.

More specifically, functional requirements describe 
system behavior and traits, from the point of view of 
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the various stakehold-
ers. They often consist of 
scenario-based descrip-
tions of sequences of 
events that reflect desired, 
allowed, and forbidden 
behavior. A central char-
acteristic of such scenario- 
based specifications is 

their interobject nature. A scenario can contain a flow 
of events involving any number of objects, internal or 
external, including subsystems and human users, for 
example, in the Windows operating system “when the 
user presses ctrl and then alt and then del, and does 
not release the pressed buttons, then the task manager 
screen is displayed.” Each scenario can list out for many 
events, triggering any number of actions, and subjecting 
all operations to a variety of conditions. Each require-
ment scenario is self-standing, and with sufficient con-
text can appear anywhere in a requirements document. 
The scenarios are composed at runtime: the execution 
environment runs all scenarios in parallel in a synchro-
nous manner, reevaluating all constraints and condi-
tions with every system step and every occurrence of 
external event. The composition and dependences are 
well understood in the reader’s mind because of the 
intuitiveness of the compositional idiom.

In addition to natural-language descriptions in 
requirement documents, such scenarios are often 
expressed in rigorous languages. A good example 
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is the visual language of live sequence charts (LSCs) 
[1], [2], which evolved from message sequence charts 
(MSCs). The LSC concepts were adopted in the latter 
formalization of UML sequence diagrams and in a 
variety of tools and methodologies. Detailed semantic 
definitions have made it possible to simulate and exe-
cute these scenario-based specifications via runtime 
concurrent consideration of all scenario constraints 
and preferences (a process termed play-out). This 
gave rise to the interobject paradigm of scenario-based 
programming (SBP), also termed behavioral program-
ming, originally supported by the Play-Engine [2] and 
later by PlayGo [3]. SBP was later extended to standard 
programming languages like Java, C++, JavaScript, and 
Erlang (see [4]), and to domain-specific textual mode-
ling languages like ScenarioTools’s SML [5].

Although interobject scenarios are an excellent 
way to specify and compose requirements, in the 
common approaches to system design and imple-
mentation, system behavior is constructed from 
intraobject specifications. These object-oriented (or 
object-centric) descriptions provide for each object 
separately its behavior as manifested in direct inter-
action with the environment and with other objects, 
through events, message exchanges, and internal 
operations. There are numerous nonvisual proce-
dural languages for object-oriented programming, 
such as Java and C++, but for a formal visual descrip-
tion of reactive behavior, it is common to use state 
machines, where each describes all the states of a 
given object and its reactions, in each state, to all 
possible external and internal stimuli.

In 1987, the statecharts language [6] was intro-
duced, as a visual formalism that augments conven-
tional state machines with notation and semantic 
definitions for the concurrency and hierarchy nec-
essary to specify and then directly execute complex 
behavior. An object-oriented version thereof was 
described in [7], and among other things this var-
iant became the basis for the state-based language 
of the UML. Statecharts have been implemented in 
multiple software engineering tools, such as STATE-
MATE and Rhapsody (acquired by IBM), MATLAB’s 
Stateflow, SCADE, LabView, Yakindu [8], and oth-
ers, and have become the visual formalism of choice 
for intraobject behavior specification in a multitude 
of industries.

The conceptual duality between the interobject 
and intraobject approaches is illustrated in Figure 1, 
originally appearing in [2].

The “full story” of the sequence of events in each 
scenario is provided explicitly in the interobject 
scenarios, while it is only implicit in the intraobject 
specification of all objects involved. Conversely, the 
full reactive behavior of any given object is visible 
explicitly in the intraobject specification, but in sce-
nario-based specifications it must be derived from 
multiple scenarios.

Although the intraobject specification approach 
is directly aligned with classical object-oriented 
programming, the translation from an interobject, 
scenario-based specification to implementation is 
a central issue in software engineering, and consti-
tutes a substantial part of many software develop-
ment efforts.

In the past, scenario-based behavior specifications 
were used mainly to help guide the development, 
and then the testing, of the implementation—given 
in a conventional intraobject fashion. Testing is often 
done with the aid of a tool that monitors the execution 
of the intraobject implementation and confirms that 
the specified interobject scenarios indeed comply 
with those specific runs. A key contribution of SBP is 
the fact that the LSC language and its derivatives have 
powerful enough syntax and semantics as to render 
the requirement specifications directly executable. In 
other words, SBP enables building a working system 
(or a highly functional simulator thereof) from mod-
ules that are aligned with how humans often describe 

Figure 1. (a) Interobject scenarios 
cross multiple object boundaries in 
describing “full stories.” (b) Intraobject 
specifications describe the “full reactivity” 
of each object. Reproduced from [2], with 
permission.
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behavior. What happens during the running, or play-
ing out, of the specification is that an SBP execution 
engine follows all the scenarios in parallel, waits for 
environment and system-driven events and reacts to 
them by triggering other events according to the spec-
ified behavior, while, significantly, avoiding or delay-
ing the triggering of events that are forbidden (in the 
current state) by some scenario.

This allows for direct execution and dynamic 
testing of requirements in early prototypes and sim-
ulations, and/or for programming a system using 
its multimodal requirement scenarios (see [9] 
paper 174). This can save the developers and engi-
neers part of the efforts associated with transforming 
requirements into design. Solutions for key design 
considerations (or concerns, etc.), such as detecting 
conflicts between independently specified scenar-
ios, or efficient parallel execution of thousands of 
scenarios, are emerging from research on SBP (see 
[4] and in [9] papers 230, 233, 257).

SBP supports agile, or spiral, development meth-
odologies, in that when new requirements or refine-
ments are introduced, one can often specify them 
incrementally in new stand-alone scenario with little 
or no change to existing ones (see [9] paper 230). 
The naturalness of programming with scenarios 
has been further discussed in several studies and in 
observing how children learn to program.

However, SBP has its limitations. While early in 
development external system behavior is usually 
conveniently described using scenarios, there are 
many inner mechanisms and details that are less 
amenable to such specification and require an 
object-oriented method. Together with constraints of 
pre-existing OO software components, and ingrained 
programming tradition, this often causes developers 
to make the entire design intraobject.

In this article, we present an overall development 
philosophy, which supports a natural integration of 
interobject and intraobject approaches. It offers a 
gradual and coherent transition from the former to 
the latter, allowing the coexistence and coexecution 
of “completed” intraobject statecharts with interob-
ject scenarios that have not yet been captured in 
statecharts, or which have been purposely retained; 
for example, for verification and validation (see 
Figure 2).

Specifically, we have extended the PlayGo tool 
for LSCs and have integrated it with the Yakindu Stat-
echart tool (available from itemis corporation; at the 

time of writing this article, the license for noncom-
mercial use is free) [8]. The integrated tool supports 
beginning with an executable model of the require-
ments and incrementally adding implementation 
details by object-oriented statecharts, and then 
optionally removing already-implemented require-
ments. Thus, the proposed approach and tool sup-
port the smooth back-and-forth transition across 
boundaries of the conceptual layers of require-
ments elicitation, formal specification, design, and 
implementation.

Introducing the Statecharts and 
LSC languages

Statecharts
Three key concepts that the statecharts formal-

ism added to classical state machines are: 1) con-
currency, i.e., separate state components that are 
active simultaneously and can carry out transitions 

Figure 2. Modest illustration of our 
vision: the interobject and intraobject 
views of system behavior are cohesively 
integrated, both superimposed upon each 
other and complementing each other.
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corners). Hierarchical containment is depicted by 
the physical containment of states within another 
state. Concurrent state components, also termed 
orthogonal states, are drawn either as a parti-
tion of states into regions, using dashed lines, or 
depending on the supporting tool, as free-floating 
states on the top level of the hierarchy. See exam-
ple in Figure 3 (taken from the railcar application 
described in the “Integration semantics and imple-
mentation” section).

Statechart transition arrows can be (optionally) 
labeled with: 1) events that trigger the transition; 
2) a guard condition (in square brackets) that must 
be true to enable it; and/or 3) actions that are to be 
carried out when the transition is taken (specified 
following a “/”). Additional actions can be specified 
to be taken upon entering or exiting a state, or while 
in a state.

The statecharts language contains additional fea-
tures (see also Figure 3), including specifying the 
raising or triggering of events; richer specification of 
conditions and time, the ability to re-enter a super-
state directly to the inner state in which it was when 
the super-state was previously exited, dealing with 
synchrony and parallelism/simultaneity (like the 
ordering of events that become enabled “at the same 
time”), reference to other objects and states within 
the statecharts of those objects, and more.

In the Yakindu statechart tool, which we use in 
our implementation, every statechart specification 
contains also a list of interfaces representing the 
class to which this statechart belongs, and objects or 
classes with which the statechart can communicate 
and the related events and variables.

A key contribution of our integration in this article 
is that the object model used by LSC is the very same 
one that is used by the statecharts infrastructure.

Live sequence charts
Figure 4 shows several LSCs [the acronym LSC is 

both the language name and a noun for a single sce-
nario (plural: LSCs)]. Each scenario describes one 
aspect of system behavior—typically its response 
to an event or a sequence of events under certain 
conditions. The events are messages (depicted as 
horizontal arrows) exchanged between (vertical) 
lifelines. Each lifeline is associated (labeled) with 
an object (symbolically by class, or concretely 
using a particular instance thereof). In a given life-
line, events are ordered, with time flowing from top 

Figure 3. Statechart of the platform-manager object 
of the railcar example, showing parts of its behavior 
in four concurrent states. The two station platforms, 
Platform 1 and Platform 2, can be allocated (or 
freed) for an incoming (resp., departing) railcar. 
The Entrance 1 state represents the current status 
of the rail segment that connects Entrance 1 with 
the platforms. The superstate main moves from 
Idle to connectingSegment upon the triggering of 
the connectSegment event, in which case its three 
arguments, arg1, arg2, and arg3, are stored in the 
internal variables carID, segType, and dir, respectively. 
When entering the connectingSegment superstate, 
the platform manager tries to allocate a platform to 
the incoming railcar, by checking which platform is 
available, in intervals of 1 second, until successful. 
This is done using the choice construct, and the active 
function checks if another region is in a certain (sub-)
state. (All statechart images are from the Yakindu 
statechart tool, and are produced here with the 
permission of itemis Corp.)

at the same time as others; 2) hierarchy, i.e., the 

ability to specify that one state contains multiple 

other states and associated transitions, with an 

unbounded containment depth; and 3) the abil-

ity to condition a local behavior on the fact that 

another region is in a particular (sub-)state. States 

are drawn as rountangles (rectangles with rounded 
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to bottom. The order among events that appear on 
different lifelines is partial and can be constrained 
by other language constructs that synchronize those 
lifelines.

The LSC language distinguishes events that are 
executed, i.e., triggered by the runtime infrastruc-
ture when enabled (marked by solid lines), from 
events that are merely monitored, i.e., waited for in 
the particular scenario (marked by dashed lines). 
The language also distinguishes events, which, once 
enabled, must eventually occur (colored red), from 
events that only may occur (colored blue).

The LSC language supports additional constructs, 
such as conditions, including ones that can cause 
interrupts in scenarios, variable assignment, flow 
control (e.g., loops), nested subcharts, and more.

The PlayGo development environment for LSC pro-
vides a rich GUI for class/object model specification 
and scenario specification, which can be done both by 
drawing and by using natural language (English text). 
It supports full execution (play-out), including simula-
tion and debugging, and play-in (translating GUI-based 
user-controlled event triggering into scenarios).

Integrating LSCs and Statecharts: A simple 
example

In this section, we motivate our integration of 
scenarios and statecharts, and illustrate it using an 
extremely simple example. We focus on its value in 
terms of the development process that integrates the 
two models, and do not deal with problem-specific 
nuances. A more elaborate example is given later, in 
the “Revisiting the railcar system” section.

The front end of our example system consists of a 
simple GUI of a switch and a light shown in Figure 5a.

The only requirement is that whenever the switch 
is set to on the light turns on, and when it is set to off, 
the light turns off. This is coded as a single scenario, 
shown in Figure 5b.

Note the use of the same variable name, state, and 
values on and off for the switch and the light, to cre-
ate the intuitive scenario logic. In this phase, the user 
does not care or know how the system implements 
the requirement; for example, how the information 
about the switch’s state is transferred to the light.

This LSC is executable, and using PlayGo the 
user can already test the specification by turning 
the switch on and off via the GUI and checking the 
light’s reaction. In the next step, the developer starts 
to incorporate design considerations, by introducing 

Figure 4. LSCs example: Scenario LSC1 specifies 
that after event E1 occurs, events E2 and E3 must 
occur, in any order, and, after both of them occur 
(enforced by the SYNC construct), E4 must occur. 
LSC2 specifies that after E5 occurs E6 must occur, 
and LSC3 specifies that once E1 occurs, E4 cannot 
occur until E6 occurs. Hence, when executing these 
LSCs, after E1 is triggered E4 will be delayed until 
E5 is triggered (by the environment or by some other 
scenario), subsequently triggering E6 and enabling E4.

a controller. The controller receives a toggle mes-
sage from the switch and sends a toggle message to 
the light. This LSC (shown in Figure 5c) is executable 
as well, and while running the two the developer can 
track the sequence of events between the switch, the 
controller and the light.

Now that the design is completed, the develop-
ers can proceed to the implementation phase. The 
first thing they might like to do is to implement the 
switch’s logic, which can be done by the statechart 
of Figure 6a. This moves the responsibility for the 
switch’s behavior from the LSCs to the statechart, and 
the corresponding message in the LSC is changed 
from executed to monitored (shown in Figure 6b).
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This integrated model, consisting of an LSC and 
a statechart, is also executable: when the user clicks 
the switch in the GUI, the statechart reacts to the 
event by calling the toggle method of the controller. 
This event is “caught” by PlayGo and is unified with 
the monitored message, thus allowing PlayGo to pro-
ceed, executing the next toggle message, and then 
turning the light on.

Gradually continuing with the implementation, the 
statechart of the controller can also be added, and 
then the one for the light. Each time a statechart takes 
responsibility for the actual triggering of events, the cor-
responding events in the LSCs are modified to be mon-
itored, and can even be removed. Figure 7 shows the 
statecharts of the three components, with the original 
requirement now in monitored mode. This model is 
actually the final implementation of our system, since 
all components are fully implemented as statecharts. 

The LSC can now be omitted if we so choose, or it can 
be run together with the statecharts as a monitor for the 
requirement, confirming at runtime that the execution 
is indeed consistent with the requirements.

Although the example described here is 
extremely simple, it demonstrates the main idea of 
our proposed development cycle, and the fact that 
although the implementation of the various compo-
nents is incremental, the system can be executed in 
full at any time during the development cycle.

Integration semantics and 
implementation

Semantics
Integrating any two runtime platforms calls for 

many decisions; for example, mapping the concepts 
of one platform into that of the other, concurrency 

Figure 6. Switch–light system: implementing the switch.

Figure 5. Switch–light system: requirements and design.
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and priority in execution, data sharing, messaging 
protocols, synchronization, etc. The details of the 
semantics we adopted for integration and its imple-
mentation are provided in the supplementary mate-
rial, at http://www.b-prog.org/sctlsc/sctlscsupp.pdf. 
Briefly, the key decisions we made were as follows.

•	 PlayGo is the host environment, controlling the 
two development environments, with smooth 
switching between the two, and the runtime envi-
ronment, with the coordinated execution, data 
sharing and message exchanges. The runtime 

architecture is depicted in Figure 8. It relies on 

Execution Bridge to be able to interface with mul-

tiple kinds of models (Yakindu and others) and 

with multiple instances of any given model.

•	 The internal clocks of the two systems are syn-

chronized.

•	 The generated Java code (of both PlayGo and 

Yakindu) can run without the development envi-

ronments.

•	 Triggered statechart events have priority over LSC 

events that are enabled and ready to execute at the 

Figure 7. Switch–light system: fully implemented.

Figure 8. High level architecture of our implementation.
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same time. This choice stems from the desire to al-
low the implementation, which is commonly devel-
oped later, and must run, to refine, and if needed, 
override the specification.

•	 Statechart events that are forbidden in an LSC will 
nevertheless occur and the resulting violation will 
be reported—as opposed to deferring the event 
until it is allowed, as would be the case with forbid-
den LSC events. The rationale for this choice is the 
same as that of the previous item.

•	 The object model is shared between the two 
platforms (see supplementary material at http://
www.b-prog.org/sctlsc/sctlscsupp.pdf).1

In addition to the above, we provide a detailed 
mapping between LSC events (associated with 
messages or parameterized method calls) and the 
corresponding statechart event names defined 

1In the future, we plan to make it possible for the user to choose semantic 
variations via plug-in code for event selection and execution-order policies.

under object interfaces in Yakindu (see supple-

mentary material at http://www.b-prog.org/sctlsc/

sctlscsupp.pdf).

Revisiting the railcar system
We now proceed to illustrate the capabilities of 

the methodology, and its semantics and the support-

ing tools, via the example appearing in the paper 

that introduced object-oriented statecharts [7] (see 

Figure 9), bringing the interobject versus intraobject 

duality to some kind of closure. For lack of space, 

our account here is rather brief, and a more detailed 

description appears in the supplemental material at 

http://www.b-prog.org/sctlsc/sctlscsupp.pdf.

The setting is as follows. Multiple terminals are con-

nected by a cyclic path, consisting of two rail tracks, 

one for each direction of travel. Several railcars (abbre-

viated cars hereafter) transport passengers between ter-

minals. A control center coordinates all activities. Each 

terminal has multiple platforms, and the incoming and 

outgoing rail segments are each connected to a short 

adjustable rail segment, within the terminal, which can 

be linked to any of the platforms.

Here are some requirement scenarios. They 

clearly illustrate the standalone, interobject “story” 

nature of scenarios in general.

•	 Car approaching terminal: When the car is 100 yards 

from the terminal, the system allocates a platform 

and an entrance segment, and, if the car is only 

passing through, also an exit segment. If the alloca-

tion is not completed when the car is within 80 yards 

from the terminal, the car must stop.

•	 Car departing terminal: A car departs the terminal 

90 seconds after arrival. The system connects the 

platform to the outgoing track via the exit seg-

ment, engages the car’s engine, and turns off the 

destination indicators on the terminal’s destina-

tion board. The car can then depart, unless it is 

behind another car and within 100 yards of it.

•	 Passenger in terminal: When a passenger is in a 

terminal and no car in the terminal is traveling 

in the desired direction, the passenger can push 

a destination button and wait until a car arrives. 

If the terminal contains an idle car, it is assigned 

to that destination, otherwise a car is sent in from 

another terminal. The system indicates car availa-

bility on the destination board.

Figure 9. Railcar system. (Reproduced from 
[7], with permission.)
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In [7], this system was programmed using object-ori-

ented statecharts; see Figure 3 for one of those. In our 

approach here, we start by formalizing the require-

ments as LSCs, as exemplified in Figures 10 and 11.

The LSC in Figure 12 specifies that every time a 

car moves, each terminal checks whether the car is 

moving in its direction and has passed the minimal 

distance. Note the use of symbolic lifelines with mul-

tiplicity, indicating a scenario that applies to multi-

ple terminals. Clearly, the implementation will differ 

Figure 10. Top LSC: Car arrival at a terminal. 

The car first calls startArrival. It then sends 

an arriveReq message to that terminal and 

waits for acknowledgment. Depending on 

whether the next terminal is its destination 

or not, it stops or passes through. Bottom 

LSC: Arrival request. The terminal asks the 

platform manager to allocate a platform 

and waits for an approval containing the 

allocated platform’s number. Then the car is 

sent to the corresponding entrance. Note in 

both LSCs the symbolic lifelines, which are 

concretized (instantiated) to specific objects 

via a binding expression; for example, in 

the top LSC, the car’s terminal property is 

compared with the ids of all terminals.

Figure 11. (a) Platform allocation: the platform 
manager waits for some platform to become available, 
allocates the first available platform and marks it as 
busy. (b) Simple LSC handling the handshake between 
the terminal and the entrance.

Figure 12. Alert 100.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore.  Restrictions apply. 



44 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

from what is described in the scenario, but since we 
are in the requirements phase, we keep our scenarios 
abstract and ignore implementation and efficiency 
issues. If there is a terminal that meets the conditions of 
direction and proximity, it informs the approaching car 
and sends it its specific terminal number (following this 
action, the car sets its terminal variable to that number) 
and then the system manager sends an alert100 signal 
to the car.

In our implementation, we chose to implement 
the car on the intraobject level, while leaving the 
other objects (the car’s “environment”) at the 
requirements interobject level. Therefore, the car’s 
statechart (Figure 13) reacts to all the input signals 
that are sent to the car and raises the output signals 
expected by the other objects.

The car’s statechart is quite straightforward, so we 
will focus on the interaction with the LSCs. When the 
car is in state cruising, it waits for the alert 100 signal 
and reacts by moving to the arrival state and raising 
the startArrival signal (event). This signal belongs to 
the car’s default interface and is therefore handled in 
the LSC as a self-method call. This event triggers the 
LSC in Figure 10. The car then waits for the endArrival 
event and moves to the idle or cruising state, depend-
ing on whether or not it should stop at that terminal. 

Figure 13. Car statechart.

Figure 14. Stop at terminal.

The endArrival event is raised by the LSC that handles 
the car’s passing through the terminal and the LSC that 
handles its stopping at the terminal (Figure 14).

Related work
Transitions from scenario-based specifica-

tions to code, via state machines, can be found 
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in the large amount of work on synthesizing finite 
automata from MSC, sequence diagrams and LSCs 
(see [9] paper 212, [10], [5], and references 
therein). However, synthesis is often impractical, 
as the size of the resulting composite automaton 
grows exponentially with the number of scenarios 
and the allowed range of variable data and event 
parameters. To help combat state explosion, syn-
thesis solutions often constrain the supported 
scope of certain expressive features in the original 
scenario language. Execution of final systems by 
playing out scenario-based specifications (as envi-
sioned, e.g., in [9] paper 174), is not ready yet to 
fully materialize.

More robust solutions are needed for dealing 
with legacy code and engineers’ preferences of 
languages. We also need adequate approaches 
for decomposing distributed systems. Hence, we 
believe that there is a need for the kind of integration 
mechanism and methodology proposed here, which 
allow human engineers to conduct a well-controlled, 
gradual transitioning from requirements to system 
implementation.

Bohn et al. [11] discuss showing different system 
views at various abstraction levels, verifying stat-
echarts against LSC specifications and using LSCs to 
generate test vectors for the statecharts. However, 
the LSCs and statechart models in [11] are sepa-
rate and their execution is not directly integrated. 
The Rhapsody tool (https://en.wikipedia.org/wiki/
Rational_Rhapsody) supports monitoring statechart 
execution against the sequence diagrams specifica-
tions, but the sequence diagrams cannot influence 
the execution.

InterPlay (in [9] paper 136) is a tool developed 
in our group to link statecharts and LSCs. Its moti-
vation was similar to that of the this article, and it 
provides a gateway that propagates and translates 
events between independently running LSCs and 
statechart engines. The contributions of the present 
research over Interplay include: a fully shared object 
model between the LSCs and the statecharts; an inte-
grated and synchronized execution semantics, and 
a supporting mechanism that can also operate with-
out the presence of the development environments 
(PlayGo and Yakindu, in this case).

In recent years, a number of efforts have been 
made to enable the joint simulation and analy-
sis of models developed in different formalisms. 
These include Ptolemy II, with its multiple models 

of computation (MoC); ModHel’X, which com-
bines semantics of multiple languages; the Epsi-
lon Merging Language (EML), which provides 
a rule-based language for merging models of 
diverse meta-models and technologies; reusable 
aspect models (RAMs), which integrates structural 
models, message views, and state views using 
an aspect-oriented modeling technique; and the 
GEMOC-based BCOoL coordination language, 
which allows the specification of diverse seman-
tics and integration between multiple languages. 
We have not been able to find a system develop-
ment environment where the execution (or sim-
ulation) of (LSC-like) multimodal scenarios and 
(statechart-like) state machines can be truly inte-
grated, with well-defined semantics.

In separate but related work, we have amal-
gamated statecharts with SBP, by extending 
Yakindu to allow associating individual states with 
requested and blocked events, and then enhanc-
ing the Yakindu event-triggering mechanism to 
deal with such specifications [12]. While this 
development allows an engineer to specify both 
scenarios and state-based reactivity in a single for-
malism, it is yet to be seen how the intuitiveness 
of the scenario’s “story” and the clarity of the roles 
played by the participating objects, which are 
key tenets of sequence diagrams and LSCs, can 
be accomplished in statecharts. Is this an issue of 
design patterns, or of visual formatting? Perhaps it 
is another issue altogether.

We have presented a development environment 
and a methodology for incremental system devel-
opment, starting with intuitive requirement scenar-
ios and ending with object-oriented state machines, 
where throughout the process all artifacts are 
analyzable and executable, enabling simulation 
and validation at all stages. In addition, the avail-
ability of powerful versions of the two modeling 
approaches implemented in a single integrated tool 
simplifies developers’ choice of the most suitable 
and naturally fitting language for the various parts 
of the system.

Future directions of work for enhancing the inte-
gration include: 1) finding a more straightforward 
mapping between parameterized LSC events and 
statechart events; 2) enabling semantic variations 
via user-supplied code; 3) enabling integration also 
with components written in standard procedural 
languages; and 4) incorporating into the integrated 
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platform important techniques that have been devel-
oped for SBP or statecharts, such as formal verifi-
cation, context-awareness, natural language input, 
execution with look-ahead (smart play-out), run-
time learning, and more (see in [9], publications 
230, 190, 112, 217).

We believe that a single tool and methodology 
for developing executable models in both interob-
ject and intraobject approaches—supporting both 
requirement specification and implementation 
phases, and with means for smooth and semanti-
cally consistent transition between the two—can 
have a dramatic impact on the cost and quality of 
complex systems development.� 
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