
352168-2356/20©2020 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCSeptember/October 2021

 When developing software in any discipline,
using the traditional waterfall process or any variant
of agile and spiral development, all stakeholders are
faced with the existence of multiple conceptual lay-
ers: requirements, design, and final running code.
Throughout the development process, domain
experts, system engineers, programmers, and other
stakeholders constantly interact to make sure that
the transitions across the boundaries of such con-
ceptual layers are indeed correct, and offer accept-
able mappings, usually unidirectional refinements.
Development tools assist in the process, by introduc-
ing artifacts that can be understood and discussed
by people of different professional backgrounds,
and which can be tested and validated, manually or
automatically, against artifacts from other layers.

More specifically, functional requirements describe
system behavior and traits, from the point of view of

Integrating Interobject
Scenarios with
Intraobject Statecharts
for Developing Reactive
Systems

Digital Object Identifier 10.1109/MDAT.2020.3006805
Date of publication: 3 July 2020; date of current version:
28 September 2021.

the various stakehold-
ers. They often consist of
scenario-based descrip-
tions of sequences of
events that reflect desired,
allowed, and forbidden
behavior. A central char-
acteristic of such scenario-
based specifications is

their interobject nature. A scenario can contain a flow
of events involving any number of objects, internal or
external, including subsystems and human users, for
example, in the Windows operating system “when the
user presses ctrl and then alt and then del, and does
not release the pressed buttons, then the task manager
screen is displayed.” Each scenario can list out for many
events, triggering any number of actions, and subjecting
all operations to a variety of conditions. Each require-
ment scenario is self-standing, and with sufficient con-
text can appear anywhere in a requirements document.
The scenarios are composed at runtime: the execution
environment runs all scenarios in parallel in a synchro-
nous manner, reevaluating all constraints and condi-
tions with every system step and every occurrence of
external event. The composition and dependences are
well understood in the reader’s mind because of the
intuitiveness of the compositional idiom.

In addition to natural-language descriptions in
requirement documents, such scenarios are often
expressed in rigorous languages. A good example

David Harel, Rami Marelly, Assaf Marron, and Smadar Szekely
Weizmann Institute of Science, Rehovot, Israel

Editor’s notes:
An important role of cross-layer design is to reconcile model-implementation
differences, often stemming from how the two layers are specified. This article
shows how a single method and tool can support both the specification and
implementation stages, resulting in better closing the “model-implementation
gap.”

—Samarjit Chakraborty, University of North Carolina at Chapel Hill

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

36 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

is the visual language of live sequence charts (LSCs)
[1], [2], which evolved from message sequence charts
(MSCs). The LSC concepts were adopted in the latter
formalization of UML sequence diagrams and in a
variety of tools and methodologies. Detailed semantic
definitions have made it possible to simulate and exe-
cute these scenario-based specifications via runtime
concurrent consideration of all scenario constraints
and preferences (a process termed play-out). This
gave rise to the interobject paradigm of scenario-based
programming (SBP), also termed behavioral program-
ming, originally supported by the Play-Engine [2] and
later by PlayGo [3]. SBP was later extended to standard
programming languages like Java, C++, JavaScript, and
Erlang (see [4]), and to domain-specific textual mode-
ling languages like ScenarioTools’s SML [5].

Although interobject scenarios are an excellent
way to specify and compose requirements, in the
common approaches to system design and imple-
mentation, system behavior is constructed from
intraobject specifications. These object-oriented (or
object-centric) descriptions provide for each object
separately its behavior as manifested in direct inter-
action with the environment and with other objects,
through events, message exchanges, and internal
operations. There are numerous nonvisual proce-
dural languages for object-oriented programming,
such as Java and C++, but for a formal visual descrip-
tion of reactive behavior, it is common to use state
machines, where each describes all the states of a
given object and its reactions, in each state, to all
possible external and internal stimuli.

In 1987, the statecharts language [6] was intro-
duced, as a visual formalism that augments conven-
tional state machines with notation and semantic
definitions for the concurrency and hierarchy nec-
essary to specify and then directly execute complex
behavior. An object-oriented version thereof was
described in [7], and among other things this var-
iant became the basis for the state-based language
of the UML. Statecharts have been implemented in
multiple software engineering tools, such as STATE-
MATE and Rhapsody (acquired by IBM), MATLAB’s
Stateflow, SCADE, LabView, Yakindu [8], and oth-
ers, and have become the visual formalism of choice
for intraobject behavior specification in a multitude
of industries.

The conceptual duality between the interobject
and intraobject approaches is illustrated in Figure 1,
originally appearing in [2].

The “full story” of the sequence of events in each
scenario is provided explicitly in the interobject
scenarios, while it is only implicit in the intraobject
specification of all objects involved. Conversely, the
full reactive behavior of any given object is visible
explicitly in the intraobject specification, but in sce-
nario-based specifications it must be derived from
multiple scenarios.

Although the intraobject specification approach
is directly aligned with classical object-oriented
programming, the translation from an interobject,
scenario-based specification to implementation is
a central issue in software engineering, and consti-
tutes a substantial part of many software develop-
ment efforts.

In the past, scenario-based behavior specifications
were used mainly to help guide the development,
and then the testing, of the implementation—given
in a conventional intraobject fashion. Testing is often
done with the aid of a tool that monitors the execution
of the intraobject implementation and confirms that
the specified interobject scenarios indeed comply
with those specific runs. A key contribution of SBP is
the fact that the LSC language and its derivatives have
powerful enough syntax and semantics as to render
the requirement specifications directly executable. In
other words, SBP enables building a working system
(or a highly functional simulator thereof) from mod-
ules that are aligned with how humans often describe

Figure 1. (a) Interobject scenarios
cross multiple object boundaries in
describing “full stories.” (b) Intraobject
specifications describe the “full reactivity”
of each object. Reproduced from [2], with
permission.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

37September/October 2021

behavior. What happens during the running, or play-
ing out, of the specification is that an SBP execution
engine follows all the scenarios in parallel, waits for
environment and system-driven events and reacts to
them by triggering other events according to the spec-
ified behavior, while, significantly, avoiding or delay-
ing the triggering of events that are forbidden (in the
current state) by some scenario.

This allows for direct execution and dynamic
testing of requirements in early prototypes and sim-
ulations, and/or for programming a system using
its multimodal requirement scenarios (see [9]
paper 174). This can save the developers and engi-
neers part of the efforts associated with transforming
requirements into design. Solutions for key design
considerations (or concerns, etc.), such as detecting
conflicts between independently specified scenar-
ios, or efficient parallel execution of thousands of
scenarios, are emerging from research on SBP (see
[4] and in [9] papers 230, 233, 257).

SBP supports agile, or spiral, development meth-
odologies, in that when new requirements or refine-
ments are introduced, one can often specify them
incrementally in new stand-alone scenario with little
or no change to existing ones (see [9] paper 230).
The naturalness of programming with scenarios
has been further discussed in several studies and in
observing how children learn to program.

However, SBP has its limitations. While early in
development external system behavior is usually
conveniently described using scenarios, there are
many inner mechanisms and details that are less
amenable to such specification and require an
object-oriented method. Together with constraints of
pre-existing OO software components, and ingrained
programming tradition, this often causes developers
to make the entire design intraobject.

In this article, we present an overall development
philosophy, which supports a natural integration of
interobject and intraobject approaches. It offers a
gradual and coherent transition from the former to
the latter, allowing the coexistence and coexecution
of “completed” intraobject statecharts with interob-
ject scenarios that have not yet been captured in
statecharts, or which have been purposely retained;
for example, for verification and validation (see
Figure 2).

Specifically, we have extended the PlayGo tool
for LSCs and have integrated it with the Yakindu Stat-
echart tool (available from itemis corporation; at the

time of writing this article, the license for noncom-
mercial use is free) [8]. The integrated tool supports
beginning with an executable model of the require-
ments and incrementally adding implementation
details by object-oriented statecharts, and then
optionally removing already-implemented require-
ments. Thus, the proposed approach and tool sup-
port the smooth back-and-forth transition across
boundaries of the conceptual layers of require-
ments elicitation, formal specification, design, and
implementation.

Introducing the Statecharts and
LSC languages

Statecharts
Three key concepts that the statecharts formal-

ism added to classical state machines are: 1) con-
currency, i.e., separate state components that are
active simultaneously and can carry out transitions

Figure 2. Modest illustration of our
vision: the interobject and intraobject
views of system behavior are cohesively
integrated, both superimposed upon each
other and complementing each other.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

38 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

corners). Hierarchical containment is depicted by
the physical containment of states within another
state. Concurrent state components, also termed
orthogonal states, are drawn either as a parti-
tion of states into regions, using dashed lines, or
depending on the supporting tool, as free-floating
states on the top level of the hierarchy. See exam-
ple in Figure 3 (taken from the railcar application
described in the “Integration semantics and imple-
mentation” section).

Statechart transition arrows can be (optionally)
labeled with: 1) events that trigger the transition;
2) a guard condition (in square brackets) that must
be true to enable it; and/or 3) actions that are to be
carried out when the transition is taken (specified
following a “/”). Additional actions can be specified
to be taken upon entering or exiting a state, or while
in a state.

The statecharts language contains additional fea-
tures (see also Figure 3), including specifying the
raising or triggering of events; richer specification of
conditions and time, the ability to re-enter a super-
state directly to the inner state in which it was when
the super-state was previously exited, dealing with
synchrony and parallelism/simultaneity (like the
ordering of events that become enabled “at the same
time”), reference to other objects and states within
the statecharts of those objects, and more.

In the Yakindu statechart tool, which we use in
our implementation, every statechart specification
contains also a list of interfaces representing the
class to which this statechart belongs, and objects or
classes with which the statechart can communicate
and the related events and variables.

A key contribution of our integration in this article
is that the object model used by LSC is the very same
one that is used by the statecharts infrastructure.

Live sequence charts
Figure 4 shows several LSCs [the acronym LSC is

both the language name and a noun for a single sce-
nario (plural: LSCs)]. Each scenario describes one
aspect of system behavior—typically its response
to an event or a sequence of events under certain
conditions. The events are messages (depicted as
horizontal arrows) exchanged between (vertical)
lifelines. Each lifeline is associated (labeled) with
an object (symbolically by class, or concretely
using a particular instance thereof). In a given life-
line, events are ordered, with time flowing from top

Figure 3. Statechart of the platform-manager object
of the railcar example, showing parts of its behavior
in four concurrent states. The two station platforms,
Platform 1 and Platform 2, can be allocated (or
freed) for an incoming (resp., departing) railcar.
The Entrance 1 state represents the current status
of the rail segment that connects Entrance 1 with
the platforms. The superstate main moves from
Idle to connectingSegment upon the triggering of
the connectSegment event, in which case its three
arguments, arg1, arg2, and arg3, are stored in the
internal variables carID, segType, and dir, respectively.
When entering the connectingSegment superstate,
the platform manager tries to allocate a platform to
the incoming railcar, by checking which platform is
available, in intervals of 1 second, until successful.
This is done using the choice construct, and the active
function checks if another region is in a certain (sub-)
state. (All statechart images are from the Yakindu
statechart tool, and are produced here with the
permission of itemis Corp.)

at the same time as others; 2) hierarchy, i.e., the

ability to specify that one state contains multiple

other states and associated transitions, with an

unbounded containment depth; and 3) the abil-

ity to condition a local behavior on the fact that

another region is in a particular (sub-)state. States

are drawn as rountangles (rectangles with rounded

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

39September/October 2021

to bottom. The order among events that appear on
different lifelines is partial and can be constrained
by other language constructs that synchronize those
lifelines.

The LSC language distinguishes events that are
executed, i.e., triggered by the runtime infrastruc-
ture when enabled (marked by solid lines), from
events that are merely monitored, i.e., waited for in
the particular scenario (marked by dashed lines).
The language also distinguishes events, which, once
enabled, must eventually occur (colored red), from
events that only may occur (colored blue).

The LSC language supports additional constructs,
such as conditions, including ones that can cause
interrupts in scenarios, variable assignment, flow
control (e.g., loops), nested subcharts, and more.

The PlayGo development environment for LSC pro-
vides a rich GUI for class/object model specification
and scenario specification, which can be done both by
drawing and by using natural language (English text).
It supports full execution (play-out), including simula-
tion and debugging, and play-in (translating GUI-based
user-controlled event triggering into scenarios).

Integrating LSCs and Statecharts: A simple
example

In this section, we motivate our integration of
scenarios and statecharts, and illustrate it using an
extremely simple example. We focus on its value in
terms of the development process that integrates the
two models, and do not deal with problem-specific
nuances. A more elaborate example is given later, in
the “Revisiting the railcar system” section.

The front end of our example system consists of a
simple GUI of a switch and a light shown in Figure 5a.

The only requirement is that whenever the switch
is set to on the light turns on, and when it is set to off,
the light turns off. This is coded as a single scenario,
shown in Figure 5b.

Note the use of the same variable name, state, and
values on and off for the switch and the light, to cre-
ate the intuitive scenario logic. In this phase, the user
does not care or know how the system implements
the requirement; for example, how the information
about the switch’s state is transferred to the light.

This LSC is executable, and using PlayGo the
user can already test the specification by turning
the switch on and off via the GUI and checking the
light’s reaction. In the next step, the developer starts
to incorporate design considerations, by introducing

Figure 4. LSCs example: Scenario LSC1 specifies
that after event E1 occurs, events E2 and E3 must
occur, in any order, and, after both of them occur
(enforced by the SYNC construct), E4 must occur.
LSC2 specifies that after E5 occurs E6 must occur,
and LSC3 specifies that once E1 occurs, E4 cannot
occur until E6 occurs. Hence, when executing these
LSCs, after E1 is triggered E4 will be delayed until
E5 is triggered (by the environment or by some other
scenario), subsequently triggering E6 and enabling E4.

a controller. The controller receives a toggle mes-
sage from the switch and sends a toggle message to
the light. This LSC (shown in Figure 5c) is executable
as well, and while running the two the developer can
track the sequence of events between the switch, the
controller and the light.

Now that the design is completed, the develop-
ers can proceed to the implementation phase. The
first thing they might like to do is to implement the
switch’s logic, which can be done by the statechart
of Figure 6a. This moves the responsibility for the
switch’s behavior from the LSCs to the statechart, and
the corresponding message in the LSC is changed
from executed to monitored (shown in Figure 6b).

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

40 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

This integrated model, consisting of an LSC and
a statechart, is also executable: when the user clicks
the switch in the GUI, the statechart reacts to the
event by calling the toggle method of the controller.
This event is “caught” by PlayGo and is unified with
the monitored message, thus allowing PlayGo to pro-
ceed, executing the next toggle message, and then
turning the light on.

Gradually continuing with the implementation, the
statechart of the controller can also be added, and
then the one for the light. Each time a statechart takes
responsibility for the actual triggering of events, the cor-
responding events in the LSCs are modified to be mon-
itored, and can even be removed. Figure 7 shows the
statecharts of the three components, with the original
requirement now in monitored mode. This model is
actually the final implementation of our system, since
all components are fully implemented as statecharts.

The LSC can now be omitted if we so choose, or it can
be run together with the statecharts as a monitor for the
requirement, confirming at runtime that the execution
is indeed consistent with the requirements.

Although the example described here is
extremely simple, it demonstrates the main idea of
our proposed development cycle, and the fact that
although the implementation of the various compo-
nents is incremental, the system can be executed in
full at any time during the development cycle.

Integration semantics and
implementation

Semantics
Integrating any two runtime platforms calls for

many decisions; for example, mapping the concepts
of one platform into that of the other, concurrency

Figure 6. Switch–light system: implementing the switch.

Figure 5. Switch–light system: requirements and design.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

41September/October 2021

and priority in execution, data sharing, messaging
protocols, synchronization, etc. The details of the
semantics we adopted for integration and its imple-
mentation are provided in the supplementary mate-
rial, at http://www.b-prog.org/sctlsc/sctlscsupp.pdf.
Briefly, the key decisions we made were as follows.

•	 PlayGo is the host environment, controlling the
two development environments, with smooth
switching between the two, and the runtime envi-
ronment, with the coordinated execution, data
sharing and message exchanges. The runtime

architecture is depicted in Figure 8. It relies on

Execution Bridge to be able to interface with mul-

tiple kinds of models (Yakindu and others) and

with multiple instances of any given model.

•	 The internal clocks of the two systems are syn-

chronized.

•	 The generated Java code (of both PlayGo and

Yakindu) can run without the development envi-

ronments.

•	 Triggered statechart events have priority over LSC

events that are enabled and ready to execute at the

Figure 7. Switch–light system: fully implemented.

Figure 8. High level architecture of our implementation.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

http://www.b-prog.org/sctlsc/sctlscsupp.pdf

42 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

same time. This choice stems from the desire to al-
low the implementation, which is commonly devel-
oped later, and must run, to refine, and if needed,
override the specification.

•	 Statechart events that are forbidden in an LSC will
nevertheless occur and the resulting violation will
be reported—as opposed to deferring the event
until it is allowed, as would be the case with forbid-
den LSC events. The rationale for this choice is the
same as that of the previous item.

•	 The object model is shared between the two
platforms (see supplementary material at http://
www.b-prog.org/sctlsc/sctlscsupp.pdf).1

In addition to the above, we provide a detailed
mapping between LSC events (associated with
messages or parameterized method calls) and the
corresponding statechart event names defined

1In the future, we plan to make it possible for the user to choose semantic
variations via plug-in code for event selection and execution-order policies.

under object interfaces in Yakindu (see supple-

mentary material at http://www.b-prog.org/sctlsc/

sctlscsupp.pdf).

Revisiting the railcar system
We now proceed to illustrate the capabilities of

the methodology, and its semantics and the support-

ing tools, via the example appearing in the paper

that introduced object-oriented statecharts [7] (see

Figure 9), bringing the interobject versus intraobject

duality to some kind of closure. For lack of space,

our account here is rather brief, and a more detailed

description appears in the supplemental material at

http://www.b-prog.org/sctlsc/sctlscsupp.pdf.

The setting is as follows. Multiple terminals are con-

nected by a cyclic path, consisting of two rail tracks,

one for each direction of travel. Several railcars (abbre-

viated cars hereafter) transport passengers between ter-

minals. A control center coordinates all activities. Each

terminal has multiple platforms, and the incoming and

outgoing rail segments are each connected to a short

adjustable rail segment, within the terminal, which can

be linked to any of the platforms.

Here are some requirement scenarios. They

clearly illustrate the standalone, interobject “story”

nature of scenarios in general.

•	 Car approaching terminal: When the car is 100 yards

from the terminal, the system allocates a platform

and an entrance segment, and, if the car is only

passing through, also an exit segment. If the alloca-

tion is not completed when the car is within 80 yards

from the terminal, the car must stop.

•	 Car departing terminal: A car departs the terminal

90 seconds after arrival. The system connects the

platform to the outgoing track via the exit seg-

ment, engages the car’s engine, and turns off the

destination indicators on the terminal’s destina-

tion board. The car can then depart, unless it is

behind another car and within 100 yards of it.

•	 Passenger in terminal: When a passenger is in a

terminal and no car in the terminal is traveling

in the desired direction, the passenger can push

a destination button and wait until a car arrives.

If the terminal contains an idle car, it is assigned

to that destination, otherwise a car is sent in from

another terminal. The system indicates car availa-

bility on the destination board.

Figure 9. Railcar system. (Reproduced from
[7], with permission.)

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

http://www.b-prog.org/sctlsc/sctlscsupp.pdf
http://www.b-prog.org/sctlsc/sctlscsupp.pdf
http://www.b-prog.org/sctlsc/sctlscsupp.pdf
http://www.b-prog.org/sctlsc/sctlscsupp.pdf
http://www.b-prog.org/sctlsc/sctlscsupp.pdf
http://www.b-prog.org/sctlsc/sctlscsupp.pdf

43September/October 2021

In [7], this system was programmed using object-ori-

ented statecharts; see Figure 3 for one of those. In our

approach here, we start by formalizing the require-

ments as LSCs, as exemplified in Figures 10 and 11.

The LSC in Figure 12 specifies that every time a

car moves, each terminal checks whether the car is

moving in its direction and has passed the minimal

distance. Note the use of symbolic lifelines with mul-

tiplicity, indicating a scenario that applies to multi-

ple terminals. Clearly, the implementation will differ

Figure 10. Top LSC: Car arrival at a terminal.

The car first calls startArrival. It then sends

an arriveReq message to that terminal and

waits for acknowledgment. Depending on

whether the next terminal is its destination

or not, it stops or passes through. Bottom

LSC: Arrival request. The terminal asks the

platform manager to allocate a platform

and waits for an approval containing the

allocated platform’s number. Then the car is

sent to the corresponding entrance. Note in

both LSCs the symbolic lifelines, which are

concretized (instantiated) to specific objects

via a binding expression; for example, in

the top LSC, the car’s terminal property is

compared with the ids of all terminals.

Figure 11. (a) Platform allocation: the platform
manager waits for some platform to become available,
allocates the first available platform and marks it as
busy. (b) Simple LSC handling the handshake between
the terminal and the entrance.

Figure 12. Alert 100.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

44 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

from what is described in the scenario, but since we
are in the requirements phase, we keep our scenarios
abstract and ignore implementation and efficiency
issues. If there is a terminal that meets the conditions of
direction and proximity, it informs the approaching car
and sends it its specific terminal number (following this
action, the car sets its terminal variable to that number)
and then the system manager sends an alert100 signal
to the car.

In our implementation, we chose to implement
the car on the intraobject level, while leaving the
other objects (the car’s “environment”) at the
requirements interobject level. Therefore, the car’s
statechart (Figure 13) reacts to all the input signals
that are sent to the car and raises the output signals
expected by the other objects.

The car’s statechart is quite straightforward, so we
will focus on the interaction with the LSCs. When the
car is in state cruising, it waits for the alert 100 signal
and reacts by moving to the arrival state and raising
the startArrival signal (event). This signal belongs to
the car’s default interface and is therefore handled in
the LSC as a self-method call. This event triggers the
LSC in Figure 10. The car then waits for the endArrival
event and moves to the idle or cruising state, depend-
ing on whether or not it should stop at that terminal.

Figure 13. Car statechart.

Figure 14. Stop at terminal.

The endArrival event is raised by the LSC that handles
the car’s passing through the terminal and the LSC that
handles its stopping at the terminal (Figure 14).

Related work
Transitions from scenario-based specifica-

tions to code, via state machines, can be found

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

45September/October 2021

in the large amount of work on synthesizing finite
automata from MSC, sequence diagrams and LSCs
(see [9] paper 212, [10], [5], and references
therein). However, synthesis is often impractical,
as the size of the resulting composite automaton
grows exponentially with the number of scenarios
and the allowed range of variable data and event
parameters. To help combat state explosion, syn-
thesis solutions often constrain the supported
scope of certain expressive features in the original
scenario language. Execution of final systems by
playing out scenario-based specifications (as envi-
sioned, e.g., in [9] paper 174), is not ready yet to
fully materialize.

More robust solutions are needed for dealing
with legacy code and engineers’ preferences of
languages. We also need adequate approaches
for decomposing distributed systems. Hence, we
believe that there is a need for the kind of integration
mechanism and methodology proposed here, which
allow human engineers to conduct a well-controlled,
gradual transitioning from requirements to system
implementation.

Bohn et al. [11] discuss showing different system
views at various abstraction levels, verifying stat-
echarts against LSC specifications and using LSCs to
generate test vectors for the statecharts. However,
the LSCs and statechart models in [11] are sepa-
rate and their execution is not directly integrated.
The Rhapsody tool (https://en.wikipedia.org/wiki/
Rational_Rhapsody) supports monitoring statechart
execution against the sequence diagrams specifica-
tions, but the sequence diagrams cannot influence
the execution.

InterPlay (in [9] paper 136) is a tool developed
in our group to link statecharts and LSCs. Its moti-
vation was similar to that of the this article, and it
provides a gateway that propagates and translates
events between independently running LSCs and
statechart engines. The contributions of the present
research over Interplay include: a fully shared object
model between the LSCs and the statecharts; an inte-
grated and synchronized execution semantics, and
a supporting mechanism that can also operate with-
out the presence of the development environments
(PlayGo and Yakindu, in this case).

In recent years, a number of efforts have been
made to enable the joint simulation and analy-
sis of models developed in different formalisms.
These include Ptolemy II, with its multiple models

of computation (MoC); ModHel’X, which com-
bines semantics of multiple languages; the Epsi-
lon Merging Language (EML), which provides
a rule-based language for merging models of
diverse meta-models and technologies; reusable
aspect models (RAMs), which integrates structural
models, message views, and state views using
an aspect-oriented modeling technique; and the
GEMOC-based BCOoL coordination language,
which allows the specification of diverse seman-
tics and integration between multiple languages.
We have not been able to find a system develop-
ment environment where the execution (or sim-
ulation) of (LSC-like) multimodal scenarios and
(statechart-like) state machines can be truly inte-
grated, with well-defined semantics.

In separate but related work, we have amal-
gamated statecharts with SBP, by extending
Yakindu to allow associating individual states with
requested and blocked events, and then enhanc-
ing the Yakindu event-triggering mechanism to
deal with such specifications [12]. While this
development allows an engineer to specify both
scenarios and state-based reactivity in a single for-
malism, it is yet to be seen how the intuitiveness
of the scenario’s “story” and the clarity of the roles
played by the participating objects, which are
key tenets of sequence diagrams and LSCs, can
be accomplished in statecharts. Is this an issue of
design patterns, or of visual formatting? Perhaps it
is another issue altogether.

We have presented a development environment
and a methodology for incremental system devel-
opment, starting with intuitive requirement scenar-
ios and ending with object-oriented state machines,
where throughout the process all artifacts are
analyzable and executable, enabling simulation
and validation at all stages. In addition, the avail-
ability of powerful versions of the two modeling
approaches implemented in a single integrated tool
simplifies developers’ choice of the most suitable
and naturally fitting language for the various parts
of the system.

Future directions of work for enhancing the inte-
gration include: 1) finding a more straightforward
mapping between parameterized LSC events and
statechart events; 2) enabling semantic variations
via user-supplied code; 3) enabling integration also
with components written in standard procedural
languages; and 4) incorporating into the integrated

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Rational_Rhapsody
https://en.wikipedia.org/wiki/Rational_Rhapsody

46 IEEE Design&Test

Cross-Layer Design of Cyber–Physical Systems

platform important techniques that have been devel-
oped for SBP or statecharts, such as formal verifi-
cation, context-awareness, natural language input,
execution with look-ahead (smart play-out), run-
time learning, and more (see in [9], publications
230, 190, 112, 217).

We believe that a single tool and methodology
for developing executable models in both interob-
ject and intraobject approaches—supporting both
requirement specification and implementation
phases, and with means for smooth and semanti-
cally consistent transition between the two—can
have a dramatic impact on the cost and quality of
complex systems development.� 

Acknowledgments
The work of David Harel was supported in part

by a grant from the Israel Science Foundation, the
William Sussman Professorial Chair of Mathematics,
and the Estate of Emile Mimran. We thank Axel
Terfloth and Andreas Mülder of itemis corporation
for their dedicated support of this project, and the
anonymous reviewers for valuable comments and
suggestions.

 References
	 [1]	 W. Damm and D. Harel, “LSCs: Breathing life into

message sequence charts,” J. Formal Methods Syst.

Des., vol. 19, no. 1, pp. 45–80, 2001.

	 [2]	 D. Harel and R. Marelly, Come, Let's Play: Scenario-

Based Programming Using LSCs and the Play-

Engine. Berlin, Heidelberg: Springer, 2003.

	 [3]	 D. Harel, S. Maoz, S. Szekely, and D. Barkan, “PlayGo:

Towards a comprehensive tool for scenario based

programming,” in Proc. ASE, 2010, pp. 359–360.

	 [4]	 D. Harel, A. Marron, and G. Weiss, “Behavioral

programming,” ACM, vol. 55, no. 7, pp. 90–100, 2012.

	 [5]	 J. Greenyer et al., “Scenario-based modeling and

synthesis for reactive systems with dynamic system

structure in ScenarioTools,” in Proc. MoDELS Demo

Poster Sessions, Co-Located ACM/IEEE 19th Int. Conf.

Model Driven Eng. Lang. Syst. (MoDELS CEUR), 2016,

pp. 16–23.

	 [6]	 D. Harel, “Statecharts: A visual formalism for complex

systems,” Sci. Comput. Program., vol. 8, no. 3,

pp. 231–274, 1987.

	 [7]	 D. Harel and E. Gery, “Executable object modeling with

statecharts,” in Proc. 18th Int. Conf. Soft. Eng. Berlin,

Germany: IEEE Press, Mar. 1996, pp. 246–257.

	 [8]	 Itemis Corporation. Yakindu Statechart Tool Web Site.

Accessed: Oct. 2015. [Online]. Available: http://www.

statecharts.org/

	 [9]	 D. Harel. (2019). Personal Publication List. Accessed:

Jan. 2019. [Online]. Available: http://www.wisdom.

weizmann.ac.il/harel/papers.html

	[10]	 H. Liang, J. Dingel, and Z. Diskin, “A comparative

survey of scenario-based to state-based model

synthesis approaches,” in Proc. Int. Workshop

Scenarios State Mach., Models, Algorithms, Tools.

New York, NY, USA: ACM, 2006, pp. 5–12.

	[11]	 J. Bohn et al., “Modeling and validating train system

applications using statemate and live sequence

charts,” in Proc. IDPT, 2002, pp. 1–9.

	[12]	 A. Marron et al., “Embedding scenario-based modeling

in statecharts,” in Proc. MORSE Workshop MoDELS,

2018, pp. 443–452.

David Harel has been with the Weizmann
Institute of Science, Rehovot, Israel, since
1980, where he was the Dean of the Faculty
of Mathematics and Computer Science. He
currently serves as the Vice President of the Israel
Academy of Sciences and Humanities, Jerusalem,
Israel. He has worked in logic and computability,
software and systems engineering, and modeling
biological systems. He invented Statecharts and
co-invented Live Sequence Charts. Among his
books are Algorithmics: The Spirit of Computing
and Computers Ltd.: What They Really Can’t Do.
His awards include the ACM Karlstrom Outstanding
Educator Award, the Israel Prize, the ACM Software
System Award, the Eme”t Prize, and five honorary
degrees. He is a Fellow of ACM, IEEE, AAAS, and
EATCS, a member of the Academia Europaea and
the Israel Academy of Sciences, a foreign member
of the U.S. National Academy of Engineering,
the U.S. National Academy of sciences, and the
American Academy of Arts and Sciences, and a
Fellow of the Royal Society (FRS).

Rami Marelly held key technology leadership
positions in the Israeli Air Force including the Head
of C4I Systems Department and the Head of Aerial
ISR Systems. As the Head Engineer, he led the IAF
IT transformation toward network centric warfare
and was responsible for the development of
networking, avionics, simulators, C4I, and security
systems. After retiring (Col. res.) from the IAF,
he co-founded Cue, Israel, a consulting firm. He
teaches advanced academic courses in systems
engineering and volunteers as a mentor in various

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

http://www.statecharts.org/
http://www.statecharts.org/

47September/October 2021

FIRST robotics projects. His research was about
specifying and executing behavioral requirements
using the Play-in/Play-out approach. He has a PhD
in computer science from the Weizmann Institute of
Science, Rehovot, Israel.

Assaf Marron is a Researcher with the Weizmann
Institute of Science’s Computer Science and Applied
Mathematics Department, Rehovot, Israel. Prior
to joining the Weizmann Institute, he held senior
management and technical positions in leading
companies including IBM and BMC Software. He
is the inventor or co-inventor of several patents.
His research interests include software engineering
and artificial intelligence. He has a PhD in computer
science from the University of Houston, Houston, TX.

Smadar Szekely was the Head of software team
in the research group of Prof. David Harel from 2009
to 2018. Prior to this, she worked as the R&D Director
at SunGard Corporation, Herzliya, Israel, where she
created complex mission-critical software products
and defined corporate software development
processes. She has a BA in computer science from
Tel-Aviv Yaffo College, Tel Aviv-Yafo, Israel.

 Direct questions and comments about this article
to Assaf Marron, Weizmann Institute of Science,
Rehovot 76100, Israel; assaf.marron@weizmann.ac.il.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 03,2021 at 04:26:05 UTC from IEEE Xplore. Restrictions apply.

